Atom- and step-economical nucleophilic arylation of azaaromatics via electrochemical oxidative cross C-C coupling reactions

Atom- and step-economical nucleophilic arylation of azaaromatics via electrochemical oxidative cross C-C coupling reactions

Green Chem., 2017, 19,2931-2935
DOI: 10.1039/C7GC00789B, Communication
O. N. Chupakhin, A. V. Shchepochkin, V. N. Charushin
A simple and efficient electrochemical method for the synthesis of asymmetrical bi(het)aryls through direct functionalization of the C(sp2)-H bond in azaaromatics with fragments of (hetero)aromatic nucleophiles has been developed

From the journal:

Green Chemistry

Atom- and step-economical nucleophilic arylation of azaaromatics via electrochemical oxidative cross C–C coupling reactions

Abstract

The synthesis of asymmetrical bi(het)aryls through direct functionalization of the C(sp2)–H bond in azaaromatics with fragments of (hetero)aromatic nucleophiles has first been carried out under electrochemical oxidative conditions. This versatile method for C–C bond formation between two aryl fragments can be realized under very mild potential-controlled oxidative conditions, and it does require neither incorporation of any halogen atoms or other leaving groups, nor the use of metal catalysts. The use of the electrochemical SHN methodology for modification of azaaromatic compounds has first been demonstrated.

http://pubs.rsc.org/en/Content/ArticleLanding/2017/GC/C7GC00789B?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+rss%2FGC+%28RSC+-+Green+Chem.+latest+articles%29#!divAbstract

str5

Synthesis of compounds 3a-d

The potassium tert-butoxide (0.55 mmol), corresponding phenols 2a-d (0.55 mmol) and acetonitrile (10mL) were added to electrochemical cell under argon atmosphere. The reaction mixture was stirred at room temperature for 15 min. Then 10-methylacridinium tetrafluoroborate 1 (0.5 mmol, 140 mg) was added to the reaction mixture, and stirred at room temperature for 1 h. The supporting electrolyte (40 mL) was placed in the anode and in the cathode cell compartment (10 mL). Finally, the acetic acid (1 mmol, 57 μL) was placed in the anode cell compartment. Electrolysis was carried out at a controlled potential (reference electrode Ag/AgNO3). Upon passing 2.1F of electricity (for a two-electron process), the electrolysis was stopped, the solvent was distilled off in vacuum from the anolyte, the residue was washed with 30 ml of ether and 10 ml of water. The residue was recrystallized from water and dried on air. 9-(4-Hydroxy-3,5-dimethyl-phenyl)-10-methyl-acridinium tetrafluoroborate (3a) Orange needles. 195 mg (98%). The product was identified as a compound 3a by comparing its 1H NMR spectra with its given in the literature. Satisfactory elemental analysis for C, H and N were obtained for compound 3a; none of the experimentally found percentages deviated from the theoretical values by more than 0.3%.2

1H NMR (500 MHz, [D6]DMSO): δ 9.09 (s, 1H), 8.82 (d, 2H, J=9.2 Hz), 8.45-8.42 (m, 2H), 8.12-8.10 (m, 2H), 7.94-7.91 (m, 2H), 7.16 (s, 2H), 4.90 (s, 3H), 2.33 (s, 6H) ppm. 13C NMR (126 MHz, [D6]DMSO): δ 161.5, 155.2, 141.1, 138.2, 130.3, 130.1, 127.6, 125.7, 124.8, 123.5, 119.0, 38.8, 16.6 ppm.

str5

/////////

Advertisements

Iridium-catalyzed highly efficient chemoselective reduction of aldehydes in water using formic acid as the hydrogen source

Iridium-catalyzed highly efficient chemoselective reduction of aldehydes in water using formic acid as the hydrogen source

Green Chem., 2017, Advance Article
DOI: 10.1039/C7GC01289F, Paper
Zhanhui Yang, Zhongpeng Zhu, Renshi Luo, Xiang Qiu, Ji-tian Liu, Jing-Kui Yang, Weiping Tang
A highly efficient iridium catalyst is developed for the chemoselective reduction of aldehydes to alcohols in water, using formic acid as a reductant.

Green Chemistry

Iridium-catalyzed highly efficient chemoselective reduction of aldehydes in water using formic acid as the hydrogen source

Abstract

A water-soluble highly efficient iridium catalyst is developed for the chemoselective reduction of aldehydes to alcohols in water. The reduction uses formic acid as the traceless reducing agent and water as a solvent. It can be carried out in air without the need for inert atmosphere protection. The products can be purified by simple extraction without any column chromatography. The catalyst loading can be as low as 0.005 mol% and the turn-over frequency (TOF) is as high as 73 800 mol mol−1 h−1. A wide variety of functional groups, such as electron-rich or deficient (hetero)arenes and alkenes, alkyloxy groups, halogens, phenols, ketones, esters, carboxylic acids, cyano, and nitro groups, are all well tolerated, indicating excellent chemoselectivity.

http://pubs.rsc.org/en/Content/ArticleLanding/2017/GC/C7GC01289F?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+rss%2FGC+%28RSC+-+Green+Chem.+latest+articles%29#!divAbstract

Image result for 4-Methoxybenzyl alcohol

4-Methoxybenzyl alcohol (2a)2 . Yellowish oil. Yield: 273 mg, 99%.

1H NMR (400 MHz, CDCl3) δ 7.23 (d, J = 8.8 Hz, 2H), 6.85 (d, J = 8.7 Hz, 2H), 4.52 (s, 2H), 3.76 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 159.07, 133.23, 128.63, 113.89, 64.73, 55.30, 55.26.

Zhanhui Yang

Zhanhui Yang

School of Pharmacy, University of Wisconsin–Madison, Madison, USA
E-mail:weiping.tang@wisc.edu

Organic Chemistry, Green Chemistry, Catalysis

PhD student
Beijing University of Chemical Technology
Organic Chemistry
Beijing, China
Image result for School of Pharmacy, University of Wisconsin–Madison, Madison, USA
School of Pharmacy, University of Wisconsin–Madison, Madison, USA
Image result for School of Pharmacy, University of Wisconsin–Madison, Madison, USA

Image result for School of Pharmacy, University of Wisconsin–Madison, Madison, USA

Image result for School of Pharmacy, University of Wisconsin–Madison, Madison, USA

4-Methoxybenzyl alcohol

//////////

The greening of peptide synthesis

 

The greening of peptide synthesis

Abstract

The synthesis of peptides by amide bond formation between suitably protected amino acids is a fundamental part of the drug discovery process. However, the required coupling and deprotection reactions are routinely carried out in dichloromethane and DMF, both of which have serious toxicity concerns and generate waste solvent which constitutes the vast majority of the waste generated during peptide synthesis. In this work, propylene carbonate has been shown to be a green polar aprotic solvent which can be used to replace dichloromethane and DMF in both solution- and solid-phase peptide synthesis. Solution-phase chemistry was carried out with Boc/benzyl protecting groups to the tetrapeptide stage, no epimerisation occurred during these syntheses and chemical yields for both coupling and deprotection reactions in propylene carbonate were at least comparable to those obtained in conventional solvents. Solid-phase peptide synthesis was carried out using Fmoc protected amino acids on a ChemMatrix resin and was used to prepare the biologically relevant nonapeptide bradykinin with comparable purity to a sample prepared in DMF.

Graphical abstract: The greening of peptide synthesis
Boc-Ala-Phe-OBn 5a    ref S1
Boc-Ala-OH (324 mg, 1.71 mmol) and HCl.H-Phe-OBn (500 mg, 1.71 mmol) were coupled according to the general coupling procedure. The residue was purified using flash column chromatography (35:65, EtOAc:PE) to give Boc-Ala-Phe-OBn 5a as a white crystalline solid (682 mg, 93%). RF = 0.34 (40:60, EtOAc:PE);
mp 95.6-96.3 °C;
[α]D 23 -27.7 (c 1.0 in MeOH);
IR (Neat) νmax 3347 (m), 3063 (w), 3029 (w), 2928 (m), 2852 (w), 1735 (w), 1684 (w) 1666 (w) and 1521 (s) cm-1;
1H NMR (400 MHz, CDCl3): δ = 7.36-7.31 (m, 3H, ArH), 7.29-7.24 (m, 2H, ArH), 7.26-7.21 (m, 3H, ArH), 7.04-6.97 (m, 2H, ArH), 6.72 (d J 7.7 Hz, 1H, Phe-NH), 5.16-5.10 (m, 1H, Ala-NH), 5.13 (d J 12.1 Hz, 1H, OCH2Ph), 5.07 (d J 12.1 Hz, 1H, OCH2Ph), 4.88 (dt, J 7.7, 5.9 1H, PheNCH), 4.11 (br, 1H, Ala-NCH), 3.13 (dd J 13.9, 6.1 Hz, 1H, CH2Ph), 3.08 (dd J 13.9, 6.1 Hz, 1H, CH2Ph), 1.41 (s, 9H, C(CH3)3), 1.29 (d J 6.6 Hz, 3H, CH3);
13C NMR (100 MHz, CDCl3): δ = 172.3 (C=O), 171.2 (C=O), 155.6 (NC=O), 135.7 (ArC), 135.1 (ArC), 129.5 (ArCH), 128.7 (ArCH), 128.6 (ArCH), 127.2 (ArCH), 80.2 (CMe3), 67.4 (OCH2Ph), 53.3 (Phe-NCH), 50.3 (Ala-NCH), 38.0 (CH2Ph), 28.4 (C(CH3)3), 18.5 (CH3);
MS (ESI) m/z 449 [(M+Na)+ , 100]; HRMS (ESI) m/z calculated for C24H30N2O5Na 449.2048 (M+Na)+ , found 449.2047 (0.6 ppm error).
S1 J. Nam, D. Shin, Y. Rew and D. L. Boger, J. Am. Chem. Soc., 2007, 129, 8747–8755; Q. Wang, Y. Wang and M. Kurosu, Org. Lett., 2012, 14, 3372–3375.
General procedure for peptide coupling reactions in PC To a suspension of an N-Boc-amino acid (1.0 eq.) and an amino acid or peptide benzyl ester (1.0 eq.) in PC (5 mL mmol-1), at 0 °C, was added a solution of HOBt (1.1 eq.) and i Pr2EtN (3.0 eq.) in a minimal quantity of PC. EDC (1.1 eq.) was added dropwise and the reaction mixture was allowed to stir at room temperature for 16h. The reaction mixture was then diluted using EtOAc (50 mL) and washed with 1M HClaq (3 × 25 mL), saturated Na2CO3 (3 × 25 mL) and H2O (3 × 25 mL). The organic layer was dried (MgSO4 ), filtered and concentrated in vacuo. Any residual PC was removed via short path distillation. Purification details for each peptide and characterising data are given in the supplementary information. General procedure for Boc deprotections in PC An N-Boc-peptide benzyl ester (1.0 eq.) was dissolved in a minimum amount of PC and trifluoroacetic acid (60 eq.) was added. The reaction mixture was allowed to stir for 3h. at room temperature before being concentrated in vacuo. Any residual PC was removed via short path distillation. Characterising data for each deprotected peptide are given in the supplementary information.
Procedure for Boc deprotection of dipeptide 5a using HCl in PC Boc-Ala-Phe-OBn 5a (50 mg, 0.117 mmol) was dissolved in PC (2.34 mL). MeOH (0.40 mL, 9.8 mmol) was added and the solution cooled to 0 o C. Acetyl chloride (0.67 mL, 9.36 mmol) was added dropwise and the solution allowed to stir at room temperature for 2h. Then, PC was removed by short path distillation. The residue was suspended in Et2O and stirred for 5 minutes before being filtered to give HCl.Ala-Ph-OBn as a white solid (32.4 mg, 76%).
Propylene carbonate 1 has been shown to be a green replacement for reprotoxic amide based solvents which are widely used in peptide synthesis. Both solution- and solidphase peptide synthesis can be carried out in propylene carbonate using acid and base labile amine protecting groups respectively. No significant racemisation of the activated amino acids occurs in propylene carbonate and the viability of solid-phase peptide synthesis in propylene carbonate was demonstrated by the synthesis of the nonapeptide bradykinin.
///////////

Synthesis of β-keto sulfones via a multicomponent reaction through sulfonylation and decarboxylation

Graphical abstract: Synthesis of β-keto sulfones via a multicomponent reaction through sulfonylation and decarboxylation

str1

1-Phenyl-2-(phenylsulfonyl)ethan-1-one (2a) 1

1H NMR (400 MHz, CDCl3) δ 7.92 (m, 4H), 7.70 – 7.58 (m, 2H), 7.54 (t, J = 7.6 Hz, 2H), 7.48 (t, J = 7.3 Hz, 2H), 4.74 (s, 2H).

13C NMR (101 MHz, CDCl3) δ 187.9, 138.7, 135.7, 134.4, 134.2, 129.3, 129.2, 128.9, 128.6, 63.4.

References 1. Lu, Q.; Zhang, J.; Peng, P.; Zhang, G.; Huang, Z.; Yi, H.; Millercd, T. J.; Lei, A. Chem. Sci. 2015, 6, 4851.

Synthesis of β-keto sulfones via a multicomponent reaction through sulfonylation and decarboxylation

*Corresponding authors

Abstract

A copper(I)-catalyzed synthesis of β-keto sulfones through a multicomponent reaction of aryldiazonium tetrafluoroborates, 3-arylpropiolic acids, sulfur dioxide, and water was developed. This reaction proceeds through a tandem radical process, and the sulfonyl radical, generated from the combination of aryldiazonium tetrafluoroborates with DABCO·(SO2)2, acts as the key intermediate. The transformation involves sulfonylation and decarboxylation, which allows for the efficient synthesis of the desired β-keto sulfones.

Graphical abstract: Synthesis of β-keto sulfones via a multicomponent reaction through sulfonylation and decarboxylation

Nickel-catalyzed carbonylation of arylboronic acids with DMF as a CO source

str1

Bis(4-methoxyphenyl)methanone

bis(4-methoxyphenyl)methanone (3b) The title product was purified by column chromatography and was obtained in 83% yield (110 mg). Rf = 0.3 (petroleum ether/ethyl acetate 30:1), light yellow oil.

1H NMR (400 MHz, CDCl3) δ (ppm):

7.80 (d, J = 8.8 Hz, 2H),  AROM H ORTHO TO -C=0

6.97 (d, J = 8.8 Hz, 2H),  AROM H ORTHO TO -OCH3

3.89 (s, 6H); TWO -OCH3 GPS

13C NMR (100 MHz, CDCl3) δ (ppm): 194.4, 162.9, 132.2, 132.1, 113.4, 55.5;

IR (KBr): 2957, 1671, 1593, 1260, 1093, 806 cm-1; HRMS(ESI) calc. for (M + Na+ ) 265.0844; found 265.0835.

Image result for MOM CAN TEACH YOU NMR

Image result for MOM CAN TEACH YOU NMR

MOM CAN TEACH YOU NMR

Nickel-catalyzed carbonylation of arylboronic acids with DMF as a CO source

Org. Chem. Front., 2017, 4,569-572
DOI: 10.1039/C7QO00001D, Research Article
Yang Li, Dong-Huai Tu, Bo Wang, Ju-You Lu, Yao-Yu Wang, Zhao-Tie Liu, Zhong-Wen Liu, Jian Lu
By using N,N-dimethylformamide (DMF) as a CO source, nickel-catalyzed carbonylation of arylboronic acids was demonstrated as an efficient and facile protocol for the synthesis of diaryl ketones.

Nickel-catalyzed carbonylation of arylboronic acids with DMF as a CO source

Abstract

By using N,N-dimethylformamide (DMF) as a CO source, the cheap metal nickel-catalyzed carbonylation of arylboronic acids was demonstrated as an efficient and facile protocol for the synthesis of diaryl ketones. Results indicated that NiBr2·diglyme was the best pre-catalyst among the investigated transitional metal salts, and excellent yields were achieved via C–H and C–N bond cleavage.

Graphical abstract: Nickel-catalyzed carbonylation of arylboronic acids with DMF as a CO source
Image result for MOM CAN TEACH YOU NMR
////////////http://www.rsc.org/suppdata/c7/qo/c7qo00001d/c7qo00001d1.pdf

Asymmetric synthesis of (S)-phenylacetylcarbinol – closing a gap in C–C bond formation

Graphical abstract: Asymmetric synthesis of (S)-phenylacetylcarbinol – closing a gap in C–C bond formation

image file: c6gc01803c-f3.tif
Fig. 3 Stereoselectivities of the new ApPDC-variants for the synthesis of (S)-PAC. The different variants were tested as wet cells, crude cell extracts, and purified enzymes. Reaction conditions: wet cells – 20 mM benzaldehyde; 200 mM pyruvate; 50 mM KPi-buffer (pH 6.5), 2.5 mM MgSO4; 0.1 mM ThDP; 20 °C; 800 rpm, 800 μL reaction volume in 1.5 mL closed glass vials, whole cell catalyst concentration of 50 mg mL−1. Crude cell extract – 20 mM benzaldehyde; 200 mM pyruvate; 50 mM KPi-buffer (pH 6.5), 2.5 mM MgSO4; 0.1 mM ThDP; 20 °C; 800 rpm, 500 μL reaction volume in a 96-well sheet; see ESI chapter 2.1.4–2.1.5 for the catalyst concentration. Purified enzyme – 40 mM benzaldehyde; 200 mM pyruvate; 50 mM KPi-buffer with three different pH values, 2.5 mM MgSO4; 0.1 mM ThDP; 22 °C; 800 rpm, 800 μL reaction volume in 1.5 mL closed glass vials; protein concentration of 1 mg mL−1.

Asymmetric synthesis of (S)-phenylacetylcarbinol – closing a gap in C–C bond formation

*Corresponding authors
aInstitute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Leo-Brandt-Str. 1, 52425 Jülich, Germany
E-mail: do.rother@fz-juelich.de
bHERBRAND PharmaChemicals GmbH, Brambachstr. 31, 77723 Gegenbach, Germany
cAlbaNova University Center, Royal Institute of Technology – School of Biotechnology, Roslagstull 21, Stockholm, Sweden
dInstitute of Pharmaceutical Sciences, Albert-Ludwigs-University Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
eMerz Pharma GmbH & Co. KGaA, Am Pharmapark, D-06861 Dessau-Rosslau, Germany
fInstitute of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
gTRUMPF GmbH+Co.KG, Ditzingen Johann-Maus-Straße 2, 71254 Ditzingen, Germany
hEnzymicals AG, Walther-Rathenau-Str 49a, 17489 Greifswald, Germany
Green Chem., 2017,19, 380-384

DOI: 10.1039/C6GC01803C

(S)-Phenylacetylcarbinol [(S)-PAC] and its derivatives are valuable intermediates for the synthesis of various active pharmaceutical ingredients (APIs), but their selective synthesis is challenging. As no highly selective enzymes or chemical catalysts were available, we used semi-rational enzyme engineering to tailor a potent biocatalyst to be >97% stereoselective for the synthesis of (S)-PAC. By optimizing the reaction and process used, industrially relevant product concentrations of >48 g L−1 (up to 320 mM) were achieved. In addition, the best enzyme variant gave access to a broad range of ring-substituted (S)-PAC derivatives with high stereoselectivity, especially for meta-substituted products.

image file: c6gc01803c-f2.tif
Fig. 2 Schematic representation of the active site of ApPDC. The legends explain the effect of different amino acid residues on the preferred orientation of the ThDP-bound donor substrate acetaldehyde, derived from pyruvate after decarboxylation (green rectangle) and the aromatic acceptor aldehyde (blue hexagon). The relative orientation of both substrates to each other defines the stereoselectivity of the product. (The figures refer to the stereoselectivities achieved with purified enzyme.)

///////////////Asymmetric synthesis, (S)-phenylacetylcarbinol,  C–C bond formation

http://pubs.rsc.org/en/Content/ArticleLanding/2017/GC/C6GC01803C?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+rss%2FGC+%28RSC+-+Green+Chem.+latest+articles%29#!divAbstract

A deeper shade of green: inspiring sustainable drug manufacturing

Graphical abstract: A deeper shade of green: inspiring sustainable drug manufacturing

Green and sustainable drug manufacturing go hand in hand with forward-looking visions seeking to balance the long-term sustainability of business, society, and the environment. However, a lack of harmonization among available metrics has inhibited opportunities for green chemistry in industry. Moreover, inconsistent starting points for analysis and neglected complexities for diverse manufacturing processes have made developing objective goals a challenge. Herein we put forward a practical strategy to overcome these barriers using data from in-depth analysis of 46 drug manufacturing processes from nine large pharmaceutical firms, and propose the Green Aspiration Level as metric of choice to enable the critically needed consistency in smart green manufacturing goals. In addition, we quantify the importance of green chemistry in the often overlooked, yet enormously impactful, outsourced portion of the supply chain, and introduce the Green Scorecard as a value added sustainability communication tool.

http://pubs.rsc.org/en/Content/ArticleLanding/2017/GC/C6GC02901A?utm_medium=email&utm_campaign=pub-GC-vol-19-issue-1&utm_source=toc-alert#!divAbstract

The Green Aspiration Level (GAL) has been constructed on four pillars to ensure consistent application, namely (1) clearly defined synthesis starting points,1 (2) unambiguous complete E factor (cEF)2,3 or Process Mass Intensity (PMI) waste metrics, (3) historical averages of industrial drug manufacturing waste, and (4) complexity of the drug’s ideal manufacturing process (Supplementary Figure 6). cEF or PMI can be used interchangeably in GAL-based analysis enabling organizations using either to calculate their green performance scores. cEF and PMI differ by just one unit (Supplementary Equation 6) and share the same commercial waste goal for an average manufacturing step4 – the transformation-GAL or tGAL – that results in negligible numerical differences from the inclusion of one or the other. The pharmaceutical industry has generally adopted PMI. However, our publication utilizes cEF values due to literature prevalence and potentially broader appeal of E factors.5 It is important to note that all reaction and workup materials are included in the analysis, but excluded are reactor cleaning6 and solvent recycling.7 Standardized process starting points are a critical component of the GAL methodology. A starting material for some may be an intermediate for others. Until recently, the scientific community lacked an unambiguous definition of process starting points in the assessment of process greenness. This has been a bothersome source of inconsistency. Failure to define an appropriate starting material can lead to exclusion of significant amounts of intrinsic raw material waste created during earlier stages of manufacture. We therefore utilize these updated definitions of process analysis starting points to ensuring higher quality of data:8

1) The material is commercially available from a major reputable chemical laboratory catalog company, and its price is listed in the (online) catalog. Materials requiring bulk or custom quotes do not qualify as process starting material. AND 2) The laboratory catalog cost of the material at its largest offered quantity does not exceed US $100/mol. Therefore, published literature must be researched if the material does not qualify as process starting material in order to determine its correct intrinsic cEF. However, we realized that determination of literature cEF values is tedious and involves making assumptions since literature procedures are often incomplete compared to internal or external manufacturing batch records. Thus, standardizing Literature cEF quickly became a desirable goal. In order to facilitate literature analysis we introduced Supplementary Equation 7 that just requires determination of literature step count from ≤$100/mol starting materials without having to retrieve literature waste information.9 The literature step multiplier of 37 kg/kg represents the average literature step cEF across the analyzed projects (Supplementary Table 1), so it equals their average literature cEF (76 kg/kg) divided by average literature step count (2.1). The process cEF and Relative Process Greenness (RPG) derived from the simplified calculated cEF literature values are shown next to their progenitors in Supplementary Table 3. We observe that average calculated and manually determined cEF and RPG values are comparable and within 10% of their means across the three development phases. Thus, we consider the simplified method sound and an importtant element to achieving consistency in green process analysis.

str1 str2 str3 str4

A deeper shade of green: inspiring sustainable drug manufacturing

 *Corresponding authors
aChemical Development, Boehringer Ingelheim Pharmaceuticals, Ridgefield, USA
E-mail: frank.roschangar@boehringer-ingelheim.com
bPharmaceutical Sciences – Worldwide Research & Development, Pfizer, Groton, USA
cPfizer, Sandwich, UK
dChemical & Analytical Development, Novartis Pharma, 4002 Basel, Switzerland
eAPI Chemistry, GlaxoSmithKline Medicines Research Centre, Stevenage, UK
fSmall Molecule Process Chemistry, Genentech, a Member of the Roche Group, South San Francisco, USA
gSmall Molecule Design and Development, Eli Lilly and Company, Indianapolis, USA
hChemical and Synthetic Development, Bristol-Myers Squibb, New Brunswick, USA
iProcess Chemistry, Merck, Rahway, New Jersey 07065, USA
jProcess Development, Amgen, Thousand Oaks, USA
kMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
lDelft University of Technology, 2628 BL Delft, Netherlands
Green Chem., 2017,19, 281-285

DOI: 10.1039/C6GC02901A

Frank Roschangar, PhD MBA

Frank Roschangar, PhD MBA

Pharmaceutical process research director, passionate about accelerating drug development and driving green chemistry.

Boehringer Ingelheim
Ingelheim am Rhein, Germany

Research experience

  • Feb 2002–Sep 2015
     Director
    Boehringer Ingelheim
    Germany · Nieder-Ingelheim
  • Aug 1996–Feb 1998
    Postdoc
    The Scripps Research Institute · Skaggs Institute for Chemical Biology · Prof. K.C. Nicolaou
    United States · La Jolla
  • Aug 1992–Aug 1996
    PhD Candidate
    Rice University · Department of Chemistry
    United States · Houston
Supplementary References
1. The $100 per mol laboratory catalog pricing requirement described in Supplementary Discussion 1 does not apply to reagents, catalysts, ligands, and solvents, since they are produced for widespread application and are not specific to the process being evaluated.
2. Since the original E factor has been applied inconsistently, the cEF metric was introduced for the purpose of GAL analysis. cEF accounts for all process reaction and process workup materials, including raw materials, intermediates, reagents, process aids, solvents, and water.
3. All E factors reported herein represent the cEF or sEF contributions of the overall manufacturing process or the sub-process (e.g. external cEF, literature cEF) to produce 1 kg of drug substance.
4. We define a step as a chemical operation involving one or more chemical transformations that form and/or break covalent or ionic bonds and lead to a stable and isolable intermediate, but not necessarily include its isolation. Examples: • Simultaneous removal of two or more protection groups involves multiple transformations, yet it is carried out in one chemical operation  counted as one step • Sequential transformations via a stable and isolable intermediate that are carried out in two operations but without intermediate workup  counted as two steps • Formation of covalent bonds or salts that occur during workup  not counted as an extra step • Separate operation of salt formation from an isolated intermediate  counted as one step • Isolation of a product, following work-up, as a solution that can be stored  counted as one step.
5. A SciFinder search for the terms ‘Process Mass Intensity’, and ‘E factor’ and ‘Environmental impact factor’ on Nov. 14, 2016 revealed that the PMI concept was present in 12, 8, 9, and 12 publications for the years 2013-2016, respectively, while the E factor concept was mentioned 39, 45, 57, and 46 times (76-86%), respectively.
6. The GAL considers only direct process materials, i.e. materials used in the chemical steps and their workups. It does not include solvents and aqueous detergents required for reactor and equipment cleaning between batches or steps, nor the frequency and duration of the equipment and facility specific cleaning operations. These parameters are considered for comprehensive environmental impact in Life Cycle Assessment (LCA) analysis.
7. In US pharmaceutical manufacturing, recycling accounts for 25% of waste handling, while energy recovery burning and treatment constitute 38% and 35%, based on 2012 data from ‘The Right-To-Know Network’ (RTKNET.ORG), Toxic Releases (TRI) Database: http://rtknet.org/db/tri.
8. The $100 per mol commodity pricing criterion was established in ref. 15 of the main article based on the author’s professional experience. The authors of this manuscript consider this figure appropriate and helpful for providing a consistent analysis.
9. If a detailed procedure is available for a particular literature step, its calculated waste can be used in place of the 37 kg/kg default value.
10. J. Li and M. D. Eastgate, Current Complexity: a Tool for Assessing the Complexity of Organic Molecules. Org. Biomol. Chem. 2015,13, 7164–7176.
11. D. P. Kjell, I. A. Watson, C. N. Wolfe and J. T. Spitler, Complexity-Based Metric for Process Mass Intensity in the Pharmaceutical Industry. Org. Process Res. Dev. 2013, 17, 169– 174.
12. R. P. Sheridan, et al., Modeling a Crowdsourcing Definition of Molecular Complexity. J. Chem. Inf. Model. 2014, 54, 1604–1616.
13. M. F. Faul, et al., Part 2: Designation and Justification of API Starting Materials: Current Practices across Member Companies of the IQ Consortium. Org. Process Res. Dev. 2014, 18, 594–600.
14. Besides offering simplicity, the GAL’s process complexity model was selected vs. the alternative structural complexity measures due to its inherent ideality-derived consideration for available synthetic methodology.
15. See main article ref. 16: it defines Construction Reactions (CR) as chemical transformations that form skeletal C-C or C-heteroatom bonds. Strategic Redox Reactions (SRR) are construction reactions that directly establish the correct functionality found in the final product, and include asymmetric reductions or oxidations. All other types of non-strategic reactions are considered as Concession Steps (CS), and include functional group interconversions, non-strategic redox reactions, and protecting group manipulations.
16. M. E. Kopach, et al., Process Development and Pilot-Plant Synthesis of (2-Chlorophenyl)[2-(phenylsulfonyl)pyridin-3- yl]methanone. Org. Process Res. Dev. 2010, 14, 1229–1238.
17. M. E. Kopach, M. M. Murray, T. M. Braden, M. E. Kobierski, O. L. Williams, Improved Synthesis of 1-(Azidomethyl)-3,5-bis- (trifluoromethyl)benzene: Development of Batch and Microflow Azide Processes. Org. Process Res. Dev. 2009, 13, 152–160. 18. RCI (Process B) = 1 − ( ) = 0.25. RCI (Process C) = 1 − ( ) = 0.38

//////////green chemistry, drugs