The greening of peptide synthesis

 

The greening of peptide synthesis

Abstract

The synthesis of peptides by amide bond formation between suitably protected amino acids is a fundamental part of the drug discovery process. However, the required coupling and deprotection reactions are routinely carried out in dichloromethane and DMF, both of which have serious toxicity concerns and generate waste solvent which constitutes the vast majority of the waste generated during peptide synthesis. In this work, propylene carbonate has been shown to be a green polar aprotic solvent which can be used to replace dichloromethane and DMF in both solution- and solid-phase peptide synthesis. Solution-phase chemistry was carried out with Boc/benzyl protecting groups to the tetrapeptide stage, no epimerisation occurred during these syntheses and chemical yields for both coupling and deprotection reactions in propylene carbonate were at least comparable to those obtained in conventional solvents. Solid-phase peptide synthesis was carried out using Fmoc protected amino acids on a ChemMatrix resin and was used to prepare the biologically relevant nonapeptide bradykinin with comparable purity to a sample prepared in DMF.

Graphical abstract: The greening of peptide synthesis
Boc-Ala-Phe-OBn 5a    ref S1
Boc-Ala-OH (324 mg, 1.71 mmol) and HCl.H-Phe-OBn (500 mg, 1.71 mmol) were coupled according to the general coupling procedure. The residue was purified using flash column chromatography (35:65, EtOAc:PE) to give Boc-Ala-Phe-OBn 5a as a white crystalline solid (682 mg, 93%). RF = 0.34 (40:60, EtOAc:PE);
mp 95.6-96.3 °C;
[α]D 23 -27.7 (c 1.0 in MeOH);
IR (Neat) νmax 3347 (m), 3063 (w), 3029 (w), 2928 (m), 2852 (w), 1735 (w), 1684 (w) 1666 (w) and 1521 (s) cm-1;
1H NMR (400 MHz, CDCl3): δ = 7.36-7.31 (m, 3H, ArH), 7.29-7.24 (m, 2H, ArH), 7.26-7.21 (m, 3H, ArH), 7.04-6.97 (m, 2H, ArH), 6.72 (d J 7.7 Hz, 1H, Phe-NH), 5.16-5.10 (m, 1H, Ala-NH), 5.13 (d J 12.1 Hz, 1H, OCH2Ph), 5.07 (d J 12.1 Hz, 1H, OCH2Ph), 4.88 (dt, J 7.7, 5.9 1H, PheNCH), 4.11 (br, 1H, Ala-NCH), 3.13 (dd J 13.9, 6.1 Hz, 1H, CH2Ph), 3.08 (dd J 13.9, 6.1 Hz, 1H, CH2Ph), 1.41 (s, 9H, C(CH3)3), 1.29 (d J 6.6 Hz, 3H, CH3);
13C NMR (100 MHz, CDCl3): δ = 172.3 (C=O), 171.2 (C=O), 155.6 (NC=O), 135.7 (ArC), 135.1 (ArC), 129.5 (ArCH), 128.7 (ArCH), 128.6 (ArCH), 127.2 (ArCH), 80.2 (CMe3), 67.4 (OCH2Ph), 53.3 (Phe-NCH), 50.3 (Ala-NCH), 38.0 (CH2Ph), 28.4 (C(CH3)3), 18.5 (CH3);
MS (ESI) m/z 449 [(M+Na)+ , 100]; HRMS (ESI) m/z calculated for C24H30N2O5Na 449.2048 (M+Na)+ , found 449.2047 (0.6 ppm error).
S1 J. Nam, D. Shin, Y. Rew and D. L. Boger, J. Am. Chem. Soc., 2007, 129, 8747–8755; Q. Wang, Y. Wang and M. Kurosu, Org. Lett., 2012, 14, 3372–3375.
General procedure for peptide coupling reactions in PC To a suspension of an N-Boc-amino acid (1.0 eq.) and an amino acid or peptide benzyl ester (1.0 eq.) in PC (5 mL mmol-1), at 0 °C, was added a solution of HOBt (1.1 eq.) and i Pr2EtN (3.0 eq.) in a minimal quantity of PC. EDC (1.1 eq.) was added dropwise and the reaction mixture was allowed to stir at room temperature for 16h. The reaction mixture was then diluted using EtOAc (50 mL) and washed with 1M HClaq (3 × 25 mL), saturated Na2CO3 (3 × 25 mL) and H2O (3 × 25 mL). The organic layer was dried (MgSO4 ), filtered and concentrated in vacuo. Any residual PC was removed via short path distillation. Purification details for each peptide and characterising data are given in the supplementary information. General procedure for Boc deprotections in PC An N-Boc-peptide benzyl ester (1.0 eq.) was dissolved in a minimum amount of PC and trifluoroacetic acid (60 eq.) was added. The reaction mixture was allowed to stir for 3h. at room temperature before being concentrated in vacuo. Any residual PC was removed via short path distillation. Characterising data for each deprotected peptide are given in the supplementary information.
Procedure for Boc deprotection of dipeptide 5a using HCl in PC Boc-Ala-Phe-OBn 5a (50 mg, 0.117 mmol) was dissolved in PC (2.34 mL). MeOH (0.40 mL, 9.8 mmol) was added and the solution cooled to 0 o C. Acetyl chloride (0.67 mL, 9.36 mmol) was added dropwise and the solution allowed to stir at room temperature for 2h. Then, PC was removed by short path distillation. The residue was suspended in Et2O and stirred for 5 minutes before being filtered to give HCl.Ala-Ph-OBn as a white solid (32.4 mg, 76%).
Propylene carbonate 1 has been shown to be a green replacement for reprotoxic amide based solvents which are widely used in peptide synthesis. Both solution- and solidphase peptide synthesis can be carried out in propylene carbonate using acid and base labile amine protecting groups respectively. No significant racemisation of the activated amino acids occurs in propylene carbonate and the viability of solid-phase peptide synthesis in propylene carbonate was demonstrated by the synthesis of the nonapeptide bradykinin.
///////////

Synthesis of β-keto sulfones via a multicomponent reaction through sulfonylation and decarboxylation

Graphical abstract: Synthesis of β-keto sulfones via a multicomponent reaction through sulfonylation and decarboxylation

str1

1-Phenyl-2-(phenylsulfonyl)ethan-1-one (2a) 1

1H NMR (400 MHz, CDCl3) δ 7.92 (m, 4H), 7.70 – 7.58 (m, 2H), 7.54 (t, J = 7.6 Hz, 2H), 7.48 (t, J = 7.3 Hz, 2H), 4.74 (s, 2H).

13C NMR (101 MHz, CDCl3) δ 187.9, 138.7, 135.7, 134.4, 134.2, 129.3, 129.2, 128.9, 128.6, 63.4.

References 1. Lu, Q.; Zhang, J.; Peng, P.; Zhang, G.; Huang, Z.; Yi, H.; Millercd, T. J.; Lei, A. Chem. Sci. 2015, 6, 4851.

Synthesis of β-keto sulfones via a multicomponent reaction through sulfonylation and decarboxylation

*Corresponding authors

Abstract

A copper(I)-catalyzed synthesis of β-keto sulfones through a multicomponent reaction of aryldiazonium tetrafluoroborates, 3-arylpropiolic acids, sulfur dioxide, and water was developed. This reaction proceeds through a tandem radical process, and the sulfonyl radical, generated from the combination of aryldiazonium tetrafluoroborates with DABCO·(SO2)2, acts as the key intermediate. The transformation involves sulfonylation and decarboxylation, which allows for the efficient synthesis of the desired β-keto sulfones.

Graphical abstract: Synthesis of β-keto sulfones via a multicomponent reaction through sulfonylation and decarboxylation

Nickel-catalyzed carbonylation of arylboronic acids with DMF as a CO source

str1

Bis(4-methoxyphenyl)methanone

bis(4-methoxyphenyl)methanone (3b) The title product was purified by column chromatography and was obtained in 83% yield (110 mg). Rf = 0.3 (petroleum ether/ethyl acetate 30:1), light yellow oil.

1H NMR (400 MHz, CDCl3) δ (ppm):

7.80 (d, J = 8.8 Hz, 2H),  AROM H ORTHO TO -C=0

6.97 (d, J = 8.8 Hz, 2H),  AROM H ORTHO TO -OCH3

3.89 (s, 6H); TWO -OCH3 GPS

13C NMR (100 MHz, CDCl3) δ (ppm): 194.4, 162.9, 132.2, 132.1, 113.4, 55.5;

IR (KBr): 2957, 1671, 1593, 1260, 1093, 806 cm-1; HRMS(ESI) calc. for (M + Na+ ) 265.0844; found 265.0835.

Image result for MOM CAN TEACH YOU NMR

Image result for MOM CAN TEACH YOU NMR

MOM CAN TEACH YOU NMR

Nickel-catalyzed carbonylation of arylboronic acids with DMF as a CO source

Org. Chem. Front., 2017, 4,569-572
DOI: 10.1039/C7QO00001D, Research Article
Yang Li, Dong-Huai Tu, Bo Wang, Ju-You Lu, Yao-Yu Wang, Zhao-Tie Liu, Zhong-Wen Liu, Jian Lu
By using N,N-dimethylformamide (DMF) as a CO source, nickel-catalyzed carbonylation of arylboronic acids was demonstrated as an efficient and facile protocol for the synthesis of diaryl ketones.

Nickel-catalyzed carbonylation of arylboronic acids with DMF as a CO source

Abstract

By using N,N-dimethylformamide (DMF) as a CO source, the cheap metal nickel-catalyzed carbonylation of arylboronic acids was demonstrated as an efficient and facile protocol for the synthesis of diaryl ketones. Results indicated that NiBr2·diglyme was the best pre-catalyst among the investigated transitional metal salts, and excellent yields were achieved via C–H and C–N bond cleavage.

Graphical abstract: Nickel-catalyzed carbonylation of arylboronic acids with DMF as a CO source
Image result for MOM CAN TEACH YOU NMR
////////////http://www.rsc.org/suppdata/c7/qo/c7qo00001d/c7qo00001d1.pdf

A Brønsted acid catalysed enantioselective Biginelli reaction

A Bronsted acid catalysed enantioselective Biginelli reaction

Green Chem., 2017, 19,1529-1535
DOI: 10.1039/C6GC03274E, Paper
Margherita Barbero, Silvano Cadamuro, Stefano Dughera
A chiral derivative of 1,2-benzenedisulfonimide, namely (-)-4,5-dimethyl-3,6-bis(o-tolyl)-1,2-benzenedisulfonimide is herein proven to be an efficient chiral catalyst in a one pot three-component Biginelli reaction.

A Brønsted acid catalysed enantioselective Biginelli reaction

*Corresponding authors
aDipartimento di Chimica, Università di Torino, C.so Massimo d’Azeglio 48, 10125 Torino, Italy
E-mail: stefano.dughera@unito.it
Green Chem., 2017,19, 1529-1535

DOI: 10.1039/C6GC03274E

A chiral derivative of 1,2-benzenedisulfonimide, namely (−)-4,5-dimethyl-3,6-bis(o-tolyl)-1,2-benzenedisulfonimide is herein proven to be an efficient chiral catalyst in a one pot three-component Biginelli reaction. In fact the yields of the target dihydropyrimidines were very high (25 examples; average 91%) and enantiomeric excesses were always excellent (14 examples; average 97%). Ultimately, we herein propose a procedure that displays a number of benefits and advantages including the total absence of solvents, mild reaction conditions, relatively short reaction times and stoichiometric reagent ratios. Target dihydropyrimidines are obtained in adequate purity, making further chromatographic purification unnecessary. Moreover, the chiral catalyst was easily recovered from the reaction mixture and reused, without the loss of catalytic activity.
dihydropyrimidine-2-thiones 5
(R)-(-)-Ethyl 6-methyl-4-phenyl-2-thioxo-3,4-dihydropyrimidine-5-carboxylate (5a): pale grey solid (135 mg, 98% yield); mp 201–202 °C ( from EtOH; lit17 200–202 °C). 96.4% Ee (GC connected to a J&W Scientific Cyclosil-B column; stationary phase: 30% heptakis (2,3-di-Omethyl-6-O-t-butyldimethylsilyl)-β-cyclodextrin in DB-1701), tR= 12.11 min (major), tR= 12.54 min (minor); [a]D -65.4 (c 0.1 in MeOH). 1H NMR (200 MHz, DMSO-d6): δ = 10.24 (br s, 1H), 9.55 (br s, 1H), 7.31–7.12 (m, 5H), 5.09 (d, J = 3.9 Hz, 1H), 3.92 (q, J = 7.0 Hz, 2H), 2.21 (s, 3H), 1.01 (t, J = 7.0 Hz, 3H); 13C NMR (50 MHz, DMSO-d6): δ = 174.9, 165.8, 145.7, 129.3, 128.3, 127.0, 101.3, 60.2, 54.7, 17.8, 14.7. MS (m/z, EI): 276 [M+ ] (45), 247 (40), 199 (100). IR (neat) ν (cm−1): 3311 (NH), 3112 (NH), 1665 (CO), 1195 (CS).
Image result for Stefano Dughera

Dughera Dott. Stefano

Tel: 0116707645
Email: stefano.dughera@unito.it
address: Department of Chemistry

Dipartimento di Chimica, Università di Torino, C.so Massimo d’Azeglio 48, 10125 Torino, Italy

R. Fu, Y. Yang, W. Lai, Y. Ma, Z. Chen, J. Zhou, W. Chai, Q. Wang, and R. Yuan, Synth. Comm., 2015, 45, 477.
//////////////Brønsted acid,  catalysed,  enantioselective,  Biginelli reaction, dihydropyrimidine-2-thiones

A two-step efficient preparation of a renewable dicarboxylic acid monomer 5,5[prime or minute]-[oxybis(methylene)]bis[2-furancarboxylic acid] from D-fructose and its application in polyester synthesis

Graphical abstract: A two-step efficient preparation of a renewable dicarboxylic acid monomer 5,5′-[oxybis(methylene)]bis[2-furancarboxylic acid] from d-fructose and its application in polyester synthesis

A two-step efficient preparation of a renewable dicarboxylic acid monomer 5,5[prime or minute]-[oxybis(methylene)]bis[2-furancarboxylic acid] from D-fructose and its application in polyester synthesis

Green Chem., 2017, 19,1570-1575
DOI: 10.1039/C6GC03314H, Paper
Ananda S. Amarasekara, Loc H. Nguyen, Nnaemeka C. Okorie, Saad M. Jamal
A renewable monomer 5,5[prime or minute]-[oxybis(methylene)]bis[2-furancarboxylic acid] from D-fructose.

A two-step efficient preparation of a renewable dicarboxylic acid monomer 5,5′-[oxybis(methylene)]bis[2-furancarboxylic acid] from D-fructose and its application in polyester synthesis

*Corresponding authors
aDepartment of Chemistry, Prairie View A&M University, Prairie View, USA
E-mail: asamarasekara@pvamu.edu
Fax: +1 936 261 3117
Tel: +1 936 261 3107
Green Chem., 2017,19, 1570-1575

DOI: 10.1039/C6GC03314H

D-Fructose was converted to the dialdehyde 5,5′-[oxybis(methylene)]bis[2-furaldehyde] by heating at 110 °C in DMSO with the Dowex 50 W X8 solid acid catalyst in 76% yield without the isolation of the intermediate 5-hydroxymethylfurfural. This dialdehyde was then converted to the dicarboxylic acid monomer, 5,5′-[oxybis(methylene)]bis[2-furancarboxylic acid], using oxygen (1 atm.) and 5% Pt/C catalyst in 1.5 M aqueous NaOH at room temperature in 98% yield. The new dicarboxylic acid monomer can be considered as a renewable resource based alternative to terephthalic acid as demonstrated by the preparation of polyesters with 1,2-ethanediol and 1,4-butanediol in 87–92% yield.

Synthesis of 5,5′-[oxybis(methylene)]bis[2-furancarboxylic acid]

pale yellow crystals. 260 mg, 98 % yield. M.pt. 207-209 °C, Lit. M. pt. 209-210 °C 37 .
IR (ATR) 761, 891, 951, 1029, 1059, 1159, 1208, 1283, 1342, 1424, 1525, 1674, 3128 cm-1
1 H NMR (DMSO-d6 ) δ 3.38 (2H, bs, 2XCOOH), 4.51 (4H, s, 2X-CH2O ), 6.61 (2H, d, J = 3.6 Hz, C-4,4′), 7.15 (2H, d, J = 3.6 Hz, C-3,3′).
13C NMR (DMSO-d6 ) δ 63.8, 112.2, 118.8, 145.3, 155.5, 159.6
37. T. Iseki and T. Sugiura, J. Biochem., 1939, 30, 113-118.
NMR PREDICT
1H NMR PREDICT
13C NMR PREDICT
//////////////O=C(O)c2ccc(COCc1ccc(o1)C(=O)O)o2
Nowruz 2017
Nowruz 2017

Highly chemoselective reduction of nitroarenes over non-noble metal nickel-molybdenum oxide catalysts

ORGANIC CHEMISTRY SELECT

Highly chemoselective reduction of nitroarenes over non-noble metal nickel-molybdenum oxide catalysts

Green Chem., 2017, 19,809-815
DOI: 10.1039/C6GC03141B, Paper
Haigen Huang, Xueguang Wang, Xu Li, Chenju Chen, Xiujing Zou, Weizhong Ding, Xionggang Lu
A non-noble Ni-MoO3/CN@SBA-15 catalyst exhibits unprecedented catalytic activity and chemoselectivity for the reduction of nitroarenes to anilines in ethanol with hydrazine hydrate.

Highly chemoselective reduction of nitroarenes over non-noble metal nickel-molybdenum oxide catalysts

Haigen Huang,a  Xueguang Wang,*ab  Xu Li,a  Chenju Chen,b  Xiujing Zou,b  Weizhong Dingab and  Xionggang Lu*ab  
*Corresponding authors
aState Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072, China
E-mail: wxg228@shu.edu.cn, luxg@shu.edu.cn
bShanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University, China
Green Chem., 2017,19, 809-815

DOI: 10.1039/C6GC03141B

The chemoselective reduction of…

View original post 148 more words

Synthesis of tetrazines from gem-difluoroalkenes under aerobic conditions at room temperature

ORGANIC CHEMISTRY SELECT

Synthesis of tetrazines from gem-difluoroalkenes under aerobic conditions at room temperature

Green Chem., 2017, Advance Article
DOI: 10.1039/C6GC03494B, Paper
Zheng Fang, Wen-Li Hu, De-Yong Liu, Chu-Yi Yu, Xiang-Guo Hu
A procedure for the synthesis of tetrazines from gem-difluoroalkenes under aerobic conditions has been developed.

Synthesis of tetrazines from gem-difluoroalkenes under aerobic conditions at room temperature

Zheng Fang,a  Wen-Li Hu,a  De-Yong Liu,a  Chu-Yi Yuab and  Xiang-Guo Hu*a  
*Corresponding authors
aNational Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China
E-mail: huxiangg@iccas.ac.cn
bBeijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Green Chem., 2017, Advance Article

DOI: 10.1039/C6GC03494B, http://pubs.rsc.org/en/Content/ArticleLanding/2017/GC/C6GC03494B?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+rss%2FGC+%28RSC+-+Green+Chem.+latest+articles%29#!divAbstract

An efficient and green procedure for the synthesis of tetrazines has…

View original post 248 more words