How flow chemistry can make processes greener.. Case study 1 Methylation with DMC.

Figure . Flow chart carboxylate system (B = vessel, V = valve).

Alkylation of N methylimidazole (MIM) with dimethyl carbonate (DMC) is investigated. Dimethyl carbonate is known as a clean methylation agent which can be used as safe alternative to conventional reagents such as methyl halides, dimethyl sulfate and phosgene. With the system shown in Figure 4, which is operated continuously, it is possible to synthesize the zwitterion 1,3-dimethyl-1H-imidazol-3-ium-2-carboxylate ([MMIM][CO2]) by alkylation of MIM with DMC. Similarly, the synthesis of ionic liquids based on N methylpiperidine and N methylpyrrolidine is possible. These ionic liquids represent versatile precursors for the synthesis of halogen free ionic liquids.

How flow chemistry can make processes greener

Case study 1 Methylation with DMC.

Increasing reaction efficiency through access to a wider range of reaction conditions

Efficient utilization of energy and time is fundamental to green chemistry and engineering. These factors are directly related to the rate of a chemical reaction, as a fast reaction will require less operating time. Economical use of space is also important, and fast reactions may allow for a smaller reactor to be utilized, particularly in continuous processes. The most straightforward way to increase reaction rate is with an increase in temperature; however, in a batch reactor, this is generally limited to the atmospheric boiling point of the solvent or reagents. In a flow reactor, pressure and temperature can be safely manipulated far beyond atmospheric conditions. Analogous to microwaves synthesis,1 reactions done in flow are often faster than in the corresponding batch reactions, which gives improved energy, time, and space efficiency.1 In contrast to typical microwave reactors, a closed system is not required, greatly facilitating scale-up.

Methylation reactions of nitrogen and oxygen nucleophiles such as indoles and phenols are important transformations often carried out on a large scale using hazardous reagents such as methyl iodideor dimethyl sulfate . Dimethylcarbonate (DMC) has been recognized as a green, albeit less reactive alternative. Due to the relatively low boiling point (90 °C) and reduced reactivity of this reagent, methylation reactions with DMC are generally slow.3 The use of an autoclave or microwave may allow higher temperatures to be used, accessing faster rates; however, this makes scale-up challenging. To access fast reaction rates and improve scalability, Tilstam used a flow reactor to do phenol and N-heterocycle methylations with DMC.4 A simple set-up was used consisting of a high pressure syringe pump, stainless steel tubing, a GC oven, and a back pressure regulator to ensure that the DMC stayed in solution. At 220 °C, yields up to 97% could be obtained with reaction times as short as ten minutes. A report by the Kappe and Holbrey group found similar results using an ionic liquid catalyst.5 While more energy may be required to reach these elevated temperatures, the use of insulation to prevent heat loss, and recycling of the energy given off from exothermic reactions all contribute greatly to energy efficiency on a commercial scale.6 Perhaps most importantly, the reduction in size and operating time of the vessel offers great improvements in sustainability. Indeed, the output of a reactor with respect to its size and operating time was identified as the most impactful component of a good process by researchers at Boehringer Ingelheim.7


Methylation with DMC.
Scheme 1 Methylation with DMC.
  1. Microwaves in Organic Synthesis, ed. A. Loupy, Wiley-VCH, Weinheim, 2006 Search PubMed.
  2. T. Razzaq and C. O. Kappe, Chem.–Asian. J., 2010, 5, 1274–1289 CAS.
  3. W.-C. Shieh, S. Dell and O. Repič, Org. Lett., 2001, 3, 4279–4281 CrossRef CAS.
  4. U. Tilstam, Org. Process Res. Dev., 2012, 16, 1974–1978 Search PubMed.
  5. T. N. Glasnov, J. D. Holbrey, C. O. Kappe, K. R. Seddon and T. Yan, Green Chem., 2012, 14, 3071–3076 RSC.
  6. S. Heubschmann, D. Kralisch, V. Hessel, U. Krtschil and C. Kompter, Chem. Eng. Technol., 2009, 32, 1757–1765 CrossRef CAS.
  7. R. Dach, J. J. Song, F. Roschanger, W. Samstag and C. H. Senanayake, Org. Process Res. Dev., 2012, 16, 1697–1706 Search PubMed.


Carbon dioxide (CO2) is an easily available, renewable carbon resource, which has the advantages of being non-toxic, abundant and economical. CO2 is also attractive as an environmentally friendly chemical reagent, and is especially useful as a phosgene substitute.CO2 is an “anhydrous carbonic acid” that rapidly reacts with basic compounds. Nucleophilicattack at CO2 conveniently produces carboxyl and carbamoyl groups. Further reactions of these species with electrophiles lead to the formation of organic carbonates and carbamates. The present article deals with the synthetic technologies leading to organic carbonates using CO2 as a raw material.


Graphical abstract: The synthesis of organic carbonates from carbon dioxide

The synthesis of organic carbonates from carbon dioxide

*Corresponding authors
aNational Institute of Advanced Industrial Science and Technology (AIST), AIST Central 5, 1-1-1 Higashi, Japan
Fax: +81 29-861-4719
bGraduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan
Chem. Commun., 2009, 1312-1330

DOI: 10.1039/B819997C

Solvent-free Mizoroki–Heck reactions and its application in the synthesis of Axitinib

A green method for the synthesis of a D-glucosamine-derived triazole@palladium catalyst is described. The synthesized catalyst containing a 2-pyridyl-1,2,3-triazole ligand was prepared via a click route in high yields and was explored in Heck cross-coupling reactions between different aryl halides and olefins under solvent-free conditions. The catalyst can be separated from the reaction mixture and reused at least six times with superior activity. In addition, using this protocol, the marketed drug Axitinib (antitumor) could be synthesized easily.


Graphical abstract: A novel d-glucosamine-derived pyridyl-triazole@palladium catalyst for solvent-free Mizoroki–Heck reactions and its application in the synthesis of Axitinib

A novel D-glucosamine-derived pyridyl-triazole@palladium catalyst for solvent-free Mizoroki–Heck reactions and its application in the synthesis of Axitinib

Chao Shen,ab   Hongyun Shen,b   Ming Yang,b   Chengcai Xiab and   Pengfei Zhang*b  

*Corresponding authors
aCollege of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
bCollege of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
Fax: +86-571-28862867
Tel: +86-571-28862867
Green Chem., 2015,17, 225-230

DOI: 10.1039/C4GC01606H

Aqua Mediated One-Pot Synthesis of 2-Amino-tetrahydrobenzo[b]pyran Derivatives Catalyzed by Mg(NO3)2•6H2O


Aqua Mediated One-Pot Synthesis of 2-Amino-tetrahydrobenzo[b]pyran Derivatives Catalyzed by Mg(NO3)2•6H2O

Letters in Organic Chemistry

Volume: 11
Issue Number: 7
First Page: 475
Last Page: 479
Page Count: 5
DOI: 10.2174/1570178611666140401221534

Author(s): Boudjemaa Boumoud, Amina Debbache, Taoues Boumoud, Raouf Boulcina and Abdelmadjid Debache

Affiliation: Laboratoire de Synthese de Molecules d’ Interets Biologiques, Departement de Chimie, Faculte des Sciences Exactes, Universite Constantine 1, 25000 Constantine, Algerie.

We describe herein a clean and efficient one-pot synthesis of 4H-benzo[b]pyran derivatives using dimedone, active methylene nitriles and aryl aldehyde via Knoevenagel condensation followed by Michael addition in the presence of Mg(NO3)2•6H2O as catalyst and water as a green solvent. The advantages of this method lie in its simplicity, low catalyst loading, cost effectiveness and easy handling. The present method also allows us to synthesize highly functionalized tetrahydrobenzo[b]pyran derivatives from simple and readily available starting materials.