Precious metal catalysts replaced with polymer-supported iron –Highly efficient iron(0) nanoparticle-catalyzed hydrogenation in water in flow

Graphical abstract: Highly efficient iron(0) nanoparticle-catalyzed hydrogenation in water in flow
Paper

Highly efficient iron(0) nanoparticle-catalyzed hydrogenation in water in flow

 
*
Corresponding authors
a
Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Canada
b
Division of Complex Catalysis, Institute for Molecular Science, Okazaki, Japan

c
RIKEN Center for Sustainable Resource Science, 2-1 Hirowasa, Wako, Japan
Green Chem., 2013, Advance Article

DOI: 10.1039/C3GC40789F
Received 26 Apr 2013, Accepted 13 Jun 2013
First published online 27 Jun 2013

 
 
Highly efficient catalytic hydrogenations are achieved by using amphiphilic polymer-stabilized Fe(0) nanoparticle (Fe NP) catalysts in ethanol or water in a flow reactor.
Alkenes, alkynes, aromatic imines and aldehydes were hydrogenated nearly quantitatively in most cases.
Aliphatic amines and aldehydes, ketone, ester, arene, nitro, and aryl halide functionalities are not affected, which provides an interesting chemoselectivity.
The Fe NPs used in this system are stabilized and protected by an amphiphilic polymer resin, providing a unique system that combines long-term stability and high activity. The NPs were characterized by TEM of microtomed resin, which established that iron remains in the zero-valent form despite exposure to water and oxygen.
The amphiphilic resin-supported Fe(0) nanoparticles in water and in flow provide a novel, robust, cheap and environmentally benign catalyst system for chemoselective hydrogenations.
 
 

 
Advertisements

4 thoughts on “Precious metal catalysts replaced with polymer-supported iron –Highly efficient iron(0) nanoparticle-catalyzed hydrogenation in water in flow

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s